:py:mod:`hypso.classification.WaterDetection.waterdetect.Common` ================================================================ .. py:module:: hypso.classification.WaterDetection.waterdetect.Common Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: hypso.classification.WaterDetection.waterdetect.Common.DWBaseConfig hypso.classification.WaterDetection.waterdetect.Common.DWConfig hypso.classification.WaterDetection.waterdetect.Common.DWutils Functions ~~~~~~~~~ .. autoapisummary:: hypso.classification.WaterDetection.waterdetect.Common.test_ini .. py:function:: test_ini() .. py:class:: DWBaseConfig(config_file=None) Base class for .. py:attribute:: _defaults .. py:attribute:: _units .. py:method:: load_config_file(config_file) Load config file :param config_file: :return: .. py:method:: return_defaults(section, key) Return default values :param section: :param key: :return: .. py:method:: get_option(section, key, evaluate) Get option value :param section: :param key: :param evaluate: :return: .. py:class:: DWConfig(config_file=None) Bases: :py:obj:`DWBaseConfig` Configuration for .. py:property:: reference_band Returns the reference band :return: .. py:property:: create_composite Returns the composite :return: .. py:property:: pdf_reports Returns the pdf report :return: .. py:property:: calc_glint Returns calculated glint :return: .. py:property:: glint_mode Returns glint mode :return: .. py:property:: min_glint_multiplier Returns minimum glint multiplier :return: .. py:property:: pdf_resolution Returns pdf resolution :return: .. py:property:: pekel_water .. py:property:: pekel_accuracy .. py:property:: save_indices .. py:property:: texture_stretching .. py:property:: external_mask .. py:property:: mask_name .. py:property:: mask_valid_value .. py:property:: mask_invalid_value .. py:property:: maximum_invalid .. py:property:: average_results .. py:property:: min_positive_pixels .. py:property:: clustering_method .. py:property:: linkage .. py:property:: train_size .. py:property:: regularization .. py:property:: min_train_size .. py:property:: max_train_size .. py:property:: score_index .. py:property:: classifier .. py:property:: detect_water_cluster .. py:property:: min_clusters .. py:property:: max_clusters .. py:property:: plot_graphs .. py:property:: graphs_bands .. py:property:: plot_ts .. py:property:: clustering_bands .. py:property:: clip_band .. py:property:: clip_inf_value .. py:property:: clip_sup_value .. py:attribute:: _config_file :value: 'WaterDetect.ini' .. py:attribute:: _defaults .. py:method:: get_masks_list(product) .. py:class:: DWutils .. py:attribute:: indices .. py:method:: parse_sat_name(folder, img_type='S2_THEIA') :staticmethod: Function To :param folder: :param img_type: :return: .. py:method:: parse_planetary_name(name) :staticmethod: Get the string with a MS PLANETARY name and extract the useful information from it. :param name: Image name :return: Dictionary with the values. .. py:method:: parse_maja_name(name) :staticmethod: Get the string with a MAJA img name (THEIA format) and extract the useful information from it. :param name: Image name :return: Dictionary with the values. .. py:method:: parse_s2cor_name(name) :staticmethod: Get the string with a S2COR name (.SAFE format) and extract the useful information from it. :param name: Image name :return: Dictionary with the values. .. py:method:: bitwise_or(array, bit_values) :staticmethod: .. py:method:: bitwise_and(array, bit_values) :staticmethod: .. py:method:: flatten(x) :staticmethod: .. py:method:: listify(lst, uniques=[]) :staticmethod: .. py:method:: check_path(path_str, is_dir=False) :staticmethod: Check if the path/file exists and returns a Path variable with it :param path_str: path string to test :param is_dir: whether if it is a directory or a file :return: Path type variable .. py:method:: get_directories(input_folder) :staticmethod: Return a list of directories in input_folder. These folders are the repository for satellite products :param input_folder: folder that stores the images :return: list of images (i.e. directories) .. py:method:: calc_normalized_difference(img1, img2, mask=None, compress_cte=0.02) :staticmethod: Calc the normalized difference of given arrays (img1 - img2)/(img1 + img2). Updates the mask if any invalid numbers (ex. np.inf or np.nan) are encountered :param img1: first array :param img2: second array :param mask: initial mask, that will be updated :param compress_cte: amount of index compression. The greater, the more the index will be compressed towards 0 :return: nd array filled with -9999 in the mask and the mask itself .. py:method:: calc_mbwi(bands, factor, mask) :staticmethod: .. py:method:: rgb_burn_in(red, green, blue, burn_in_array, color=None, min_value=None, max_value=None, colormap='viridis', fade=1, uniform_distribution=False, no_data_value=-9999, valid_value=1, transp=0.0) :staticmethod: Burn in a mask or a specific parameter into an RGB image for visualization purposes. The burn_in_array will be copied where values are different from no_data_value. :param uniform_distribution: convert the input values in a uniform histogram :param colormap: matplotlib colormap (string) to create the RGB ramp :param max_value: maximum value :param min_value: minimum value :param red: Original red band :param green: Original green band :param blue: Original blue band :param burn_in_array: Values to be burnt in :param no_data_value: Value to ne unconsidered :param color: Tuple of color (R, G, B) to be used in the burn in :param fade: Fade the RGB bands to emphasize the copied values :param transp: Transparency to use in the mask (0=opaque 1=completely transparent) :return: RGB image bands .. py:method:: apply_mask(array, mask, no_data_value=-9999, clear_nan=True) :staticmethod: .. py:method:: gray2color_ramp(grey_array, color1=(0.0, 0.0, 0.6), color2=(0.0, 0.8, 0.0), color3=(1.0, 0.0, 0.0), min_value=0, max_value=20, colormap='viridis', limits=(0, 1)) :staticmethod: Convert a greyscale n-dimensional matrix into a rgb matrix, adding 3 dimensions to it for R, G, and B The colors will be mixed :param max_value: Maximum value for the color ramp, if None, we consider max(grey) :param min_value: Minimum value for the color ramp, if None, we consider min(grey) :param grey_array: greyscale vector/matrix :param color1: Color for the minimum value :param color2: Color for the mid value :param color3: Color for the maximum value :param limits: Final boundary limits for the RGB values :return: Colored vector/matrix .. py:method:: array2raster(filename, array, geo_transform, projection, nodatavalue=0, dtype=None) :staticmethod: .. py:method:: array2rgb_raster(filename, red, green, blue, geo_transform, projection, nodatavalue=-9999) :staticmethod: .. py:method:: tif_2_pdf(tif_file, resolution=600, scale=2000) :staticmethod: Convert a TIF image into a PDF given a resolution :param tif_file: :param resolution: :param scale: :return: .. py:method:: array2multiband(filename, array, geo_transform, projection, nodatavalue=0, dtype=None) :staticmethod: .. py:method:: get_train_test_data(data, train_size, min_train_size, max_train_size) :staticmethod: Split the provided data in train-test bunches :param min_train_size: minimum data quantity for train set :param max_train_size: maximum data quantity for train set :param train_size: percentage of the data to be used as train dataset :param data: data to be split :return: train and test datasets .. py:method:: plot_clustered_data(data, cluster_names, file_name, graph_options, pdf_merger) :staticmethod: .. py:method:: plot_graphs(bands, graphs_bands, labels_array, file_name, graph_title, invalid_mask=False, max_points=1000, pdf_merger=None) :staticmethod: .. py:method:: create_composite(bands, folder_name, pdf=True, resolution=600, offset=0) :staticmethod: .. py:method:: create_bands_dict(bands_array, bands_order) :staticmethod: .. py:method:: create_colorbar_pdf(product_name, title, label, colormap, min_value, max_value, log_scale=False) :staticmethod: .. py:method:: find_file_glob(file_string, folder) :staticmethod: .. py:method:: read_gdal_ds(file, shape_file, temp_dir) :staticmethod: Read a GDAL dataset clipping it with a given shapefile, if necessary :param file: Filepath of the GDAL file (.tif, etc.) as Pathlib :param shape_file: file path of the shapefile :param temp_dir: file path of the temporary directory :return: GDAL dataset .. py:method:: extract_angles_from_xml(xml) :staticmethod: Parameters ---------- xml : TYPE xml file DESCRIPTION Filepath of the metadata file from L2A Sentinel 2 data: example "SENTINEL2A_20200328-104846-345_L2A_T31TFJ_C_V2-2_MTD_ALL.xml" :return g: list of glint values Info ------- SZA : TYPE float DESCRIPTION. Sun zenith angle SazA : TYPE float DESCRIPTION. Sun azimuth angle zenith_angle : TYPE list of strings DESCRIPTION. Mean_Viewing_Incidence_Angle_List for all the bands azimuth_angle : TYPE list of strings DESCRIPTION. Mean_Viewing_Incidence_Angle_List for all the bands .. py:method:: write_pdf(filename, text, size=(300, 50), position=(5, 5), font_color=(0, 0, 0)) :staticmethod: .. py:method:: create_glint_pdf(xml, name_img, output_folder, g, pdf_merger) :staticmethod: Function to create an image to add in the pdf report that indicates if there is glint on an image Parameters ---------- xml : TYPE xml file DESCRIPTION Filepath of the metadata file from L2A Sentinel 2 data: example "SENTINEL2A_20200328-104846-345_L2A_T31TFJ_C_V2-2_MTD_ALL.xml" name_img : getting current image name output_folder: filepath of the output folder g: TYPE list DESCRIPTION list with glint values for each band of the Sentinel 2 product pdf_merger: function to add an element to a pdf .. py:method:: remove_negatives(bands, mask=None, negative_values='mask') :staticmethod: Remove negatives values of given arrays b1 and b2, except masked values. :param bands: list of bands to be adjusted :param mask: initial mask :param negative_values: mask - mask the negative values; # fixed - replace all negative values for 0.001; shift - shift each band by its minimum value, so every band has only positive values; shift_all - shift each band by the minimum value of all bands. All bands will be shifted up by the same amount :return: nd arrays without negatives values