:py:mod:`hypso.classification.WaterDetection.waterdetect.Glint`
===============================================================
.. py:module:: hypso.classification.WaterDetection.waterdetect.Glint
Module Contents
---------------
Classes
~~~~~~~
.. autoapisummary::
hypso.classification.WaterDetection.waterdetect.Glint.DWGlintProcessor
.. py:class:: DWGlintProcessor(image, limit_angle=30)
.. py:attribute:: supported_products
:value: ['S2_S2COR', 'S2_THEIA', 'S2_PLANETARY']
.. py:method:: create(image, limit_angle=30)
:classmethod:
.. py:method:: get_grid_values_from_xml(tree_node, xpath_str)
:staticmethod:
Receives a XML tree node and a XPath parsing string and search for children matching the string.
Then, extract the VALUES in v1 v2 v3 v4 v5 v6 format as numpy array
Loop through the arrays to compute the mean.
.. py:method:: create_glint_array(xml_file, product)
:staticmethod:
.. py:method:: create_annotated_heatmap(hm, img=None, cmap='magma', vmin=0.7, vmax=0.9)
:staticmethod:
Create an annotated heatmap. Parameter img is an optional background img to be blended
.. py:method:: nn_interpolate(arr, new_size)
:staticmethod:
Vectorized Nearest Neighbor Interpolation
From post: https://gist.github.com/KeremTurgutlu/68feb119c9dd148285be2e247267a203
.. py:method:: create_glint_heatmap(rgb, glint_arr, limit_angle)
:staticmethod:
.. py:method:: save_heatmap(folder, filename='glint_heatmap.pdf', dpi=50, brightness=5.0)
.. py:method:: create_multiplication_coefs(min_glint_multiplier=0.5)
.. py:method:: show_multiplication_coefs()
.. py:method:: glint_adjusted_threshold(band, value, thresh_type, mask=None, min_glint_multiplier=0.5)
Create an array with the image resolution, with the threshold adjusted for the GLINT
thresh_type can be SUP or INF
.. py:method:: __repr__()
Return repr(self).