:py:mod:`hypso.classification.WaterDetection.waterdetect.Image` =============================================================== .. py:module:: hypso.classification.WaterDetection.waterdetect.Image Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: hypso.classification.WaterDetection.waterdetect.Image.DWImageClustering .. py:class:: DWImageClustering(bands, bands_keys, invalid_mask, config, glint_processor=None) .. py:property:: product_name .. py:method:: get_necessary_bands() Check the config file and all the parametrization to return a set of bands needed to run the algorithm .. py:method:: check_necessary_bands(bands, bands_keys, invalid_mask) Check if the bands_keys combination for the clustering algorithm are available in bands and if they all have the same shape :param invalid_mask: array mask with the invalid pixels :param bands: image bands available :param bands_keys: bands combination :return: bands and bands_keys .. py:method:: bands_to_columns() Convert self.bands to a column type matrix where each band is a column It follows the order of the keys ordered :return: column type matrix .. py:method:: apply_cluster(data) Apply the cluster algorithm to the data. Number of cluster is in self.best_k :param data: data to be clustered :return: Vector with the labels .. py:method:: find_best_k(data) Find the best number of clusters according to an metrics. :param data: data to be tested :return: number of clusters .. py:method:: calc_clusters_params(data, clusters_labels) Calculate parameters for each encountered cluster. Mean, Variance, Std-dev :param data: Clustered data :param clusters_labels: Labels for the data :return: List with cluster statistics .. py:method:: identify_water_cluster() Finds the water cluster within all the clusters. It can be done using MNDWI, MBWI or Mir2 bands :return: water cluster object .. py:method:: detect_cluster(param, logic, band1, band2=None) Detects a cluster according to a specific metrics :param param: Which parameter to search (mean, std-dev, variance, ...) :param logic: Max or Min :param band1: The band related to the parameter :param band2: :return: Cluster object that satisfies the logic .. py:method:: supervised_classification(data, train_data, clusters_labels) Applies a machine learning supervised classification :param data: new data to be classified :param train_data: reference data :param clusters_labels: labels for the reference data :return: labels for the new data .. py:method:: apply_svm(data, clusters_labels, clusters_data) :staticmethod: Apply Support Vector Machine to classify data :param data: new data to be classified :param clusters_labels: labels for the reference data :param clusters_data: reference data :return: labels for the new data .. py:method:: apply_naive_bayes(data, clusters_labels, clusters_data) :staticmethod: Apply Naive Bayes classifier to classify data :param data: new data to be classified :param clusters_labels: labels for the reference data :param clusters_data: reference data :return: labels for the new data .. py:method:: apply_mlp(data, clusters_labels, clusters_data) :staticmethod: Apply Multilayer Perceptron classifier to classify data :param data: new data to be classified :param clusters_labels: labels for the reference data :param clusters_data: reference data :return: labels for the new data .. py:method:: get_cluster_param(clusters_params, k, param, band) .. py:method:: verify_cluster(clusters_params, k) .. py:method:: create_matrice_cluster(indices_array) Recreates the matrix with the original shape with the cluster labels for each pixel :param indices_array: position of the clustered pixels in the matrix :return: clustered image (0-no data, 1-water, 2, 3, ... - other) .. py:method:: split_data_by_bands(data, selected_keys) Gets data in column format (each band is a column) and returns only the desired bands :param data: data in column format :param selected_keys: bands keys to be extracted :return: data in column format only with the selected bands .. py:method:: create_product_name() .. py:method:: apply_canny_treshold() .. py:method:: apply_otsu_treshold() .. py:method:: run_detect_water(config=None) Runs the detect_water function :param config: Options dictionary for the processing :return: clustered matrix where 1= water .. py:method:: index_of_key(key) .. py:method:: separate_high_low_mndwi() .. py:method:: apply_clustering()