:py:mod:`hypso.experimental.chlorophyll.estimate_chlorophyll_ml` ================================================================ .. py:module:: hypso.experimental.chlorophyll.estimate_chlorophyll_ml Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: hypso.experimental.chlorophyll.estimate_chlorophyll_ml.get_best_features hypso.experimental.chlorophyll.estimate_chlorophyll_ml.start_chl_estimation .. py:function:: get_best_features(X_train_rrs, y_train_rrs, X_test_rrs, y_test_rrs, dataset_name = 'hypso') Compute the optimal features based on the findings of the Master thesis "Improving Ocean Chlorophyll Estimation in Satellite Hyperspectral Images Using Ensemble Machine Learning" by Flores-Romero Alvaro :param X_train_rrs: Surface reflectance values for training :param y_train_rrs: Surface chlorophyll values for training :param X_test_rrs: Surface reflectance values for testing :param y_test_rrs: Surface chlorophyll values for testing :param dataset_name: Dataset name to estimate values. Defaults to "hypso" :return: Returns the features for training and testing .. py:function:: start_chl_estimation(sat_obj, model_path=None) Estimates the chlorophyll using a trained ML Scikit-Learn Model :param sat_obj: Hypso satellite object :param model_path: Absolute path for the pre-trained Scikit-Learn model :return: No return.