hypso.plot.map
Module Contents
Functions
|
Calculate the axis extent of the capture using the latitude and longitude arrays |
|
Calculate the image extent of the capture using the latitude and longitude arrays to plot capture on a map. |
|
Matplotlib Image tick formatter |
|
Get cartopy axis adjusted to the projection of the Hypso capture focused on the map area defined by the latitude |
|
Function to add points to overlay on the RGB Map of the Hypso image |
|
Show RGB overlay of the Hypso image on a map. |
|
Plot a 2D array overlayed on a RGB Hypso Capture on a Map. |
|
Automatically adjust the image contracts using histogram equalization. |
|
Write an RGB Image from specified Bands. Optional parameters are |
|
Check and generate the projection metadata from GeoTiff. Generates GeoTiff if none is found. |
|
Write the RGB image to a .png file |
Attributes
- hypso.plot.map.PLOTZOOM = 1.0
- hypso.plot.map.axis_extent(lat, lon)
Calculate the axis extent of the capture using the latitude and longitude arrays
- Parameters:
lat (numpy.ndarray) – 2D array of latitudes
lon (numpy.ndarray) – 2D array of longitudes
- Returns:
List with the [lon_min, lon_max, lat_min, lat_max]
- Return type:
List[float]
- hypso.plot.map.image_extent(inproj_value, lat, lon)
Calculate the image extent of the capture using the latitude and longitude arrays to plot capture on a map.
- Parameters:
inproj_value (osgeo.osr.SpatialReference) – Spatial reference projection value
lat (numpy.ndarray) – 2D array of latitudes
lon (numpy.ndarray) – 2D array of longitudes
- Returns:
Returns two values, the image extent of the capture transformed into an EPSG projection and the projection into a cartopy projection
- Return type:
Tuple[tuple, cartopy._epsg._EPSGProjection]
- hypso.plot.map.tick_log_formatter(y, pos)
Matplotlib Image tick formatter
- Parameters:
pos – Axis position
y – Y-axis object
- Returns:
Formatted axis to log format
- hypso.plot.map.get_cartopy_axis(satellite_obj, dpi_input)
Get cartopy axis adjusted to the projection of the Hypso capture focused on the map area defined by the latitude and longitude arrays.
- Parameters:
satellite_obj – Hypso satellite object
dpi_input (int) – DPI Resolution for the plot
- Returns:
Matplotlib axes object adjusted to the Hypso image, the image extent tuple, the project RPSG and the latitude and longitude array.
- Return type:
Tuple[matplotlib.axes.Axes, tuple[float, float, float, float], cartopy._epsg._EPSGProjection, numpy.ndarray, numpy.ndarray]
- hypso.plot.map.point_rgb_map(satellite_obj, plotTitle='RGB Image', dpi_input=450, patch_dict=None, r_plot=0.007, path_to_save=None)
Function to add points to overlay on the RGB Map of the Hypso image
- Parameters:
satellite_obj – Hypso satellite object
plotTitle – Title for the plot
dpi_input – Resolution in DPI´s. Default 450.
patch_dict – Dictionary containing the location and color of the points to plot
{"Point 1":{"lat":60.7776, "lon":11.0895, "color":"red"}, "Point 2":{"lat":60.5, "lon":10.4, "color":"orange"}}
r_plot – Radius of the plotted points. Default: 0.007.
path_to_save – Absolute Path to save the plot image.
- Returns:
No return.
- Return type:
None
- hypso.plot.map.show_rgb_map(satellite_obj, plotTitle='RGB Image', dpi_input=450)
Show RGB overlay of the Hypso image on a map.
- Parameters:
satellite_obj – Hypso satellite object
plotTitle – Title for the plot
dpi_input – Resolution in DPI´s. Default 450.
- Returns:
No return.
- Return type:
None
- hypso.plot.map.plot_array_overlay(satellite_obj, plot_array, plotTitle='2D Array', cbar_title=' Chlorophyll Concentration [mg m^-3]', dpi_input=450, min_value=0.01, max_value=100)
Plot a 2D array overlayed on a RGB Hypso Capture on a Map.
- Parameters:
satellite_obj – Hypso satellite object
plot_array – 2D array to plot. Should be of the same size of the Hypso capture Lat/Lon arrays
plotTitle – Tile for the plot
cbar_title – Tile for the colorbar
dpi_input – Resolution in DPI´s. Default 450.
min_value – Minimum value for the Colorbar
max_value – Maximum value for the Colorbar
- Returns:
No return.
- Return type:
None
- hypso.plot.map.auto_adjust_img(img)
Automatically adjust the image contracts using histogram equalization.
- Parameters:
img (numpy.ndarray) – Image to adjust as a numpy array.
- Returns:
Adjusted image as a numpy array.
- Return type:
numpy.ndarray
- hypso.plot.map.get_rgb(sat_obj, R_wl=650, G_wl=550, B_wl=450)
Write an RGB Image from specified Bands. Optional parameters are
- Parameters:
R_wl – The wavelength for the red channel. Defaults to 650.
G_wl – The wavelength for the green channel. Defaults to 550.
B_wl – The wavelength for the blue channel. Defaults to 450.
sat_obj – Hypso satellite object
- Returns:
PIL Image object
- Return type:
numpy.ndarray
- hypso.plot.map.check_projection_geotiff(satobj)
Check and generate the projection metadata from GeoTiff. Generates GeoTiff if none is found.
- Parameters:
satobj – Hypso satellite object
- Returns:
- Return type:
None
- hypso.plot.map.write_rgb_to_png(sat_obj, path_to_save)
Write the RGB image to a .png file
- Parameters:
sat_obj – Hypso Satellite object
path_to_save (str) – Path to save the .png image. Should include the file extension.
- Returns:
No return.
- Return type:
None