hypso.experimental.chlorophyll.estimate_chlorophyll_ml module
- hypso.experimental.chlorophyll.estimate_chlorophyll_ml.get_best_features(X_train_rrs, y_train_rrs, X_test_rrs, y_test_rrs, dataset_name='hypso')
Compute the optimal features based on the findings of the Master thesis “Improving Ocean Chlorophyll Estimation in Satellite Hyperspectral Images Using Ensemble Machine Learning” by Flores-Romero Alvaro
- Parameters:
X_train_rrs (ndarray) – Surface reflectance values for training
y_train_rrs (ndarray) – Surface chlorophyll values for training
X_test_rrs (ndarray) – Surface reflectance values for testing
y_test_rrs (ndarray) – Surface chlorophyll values for testing
dataset_name (str) – Dataset name to estimate values. Defaults to “hypso”
- Returns:
Returns the features for training and testing
- Return type:
Tuple[DataFrame, DataFrame]
- hypso.experimental.chlorophyll.estimate_chlorophyll_ml.start_chl_estimation(sat_obj, model_path=None)
Estimates the chlorophyll using a trained ML Scikit-Learn Model
- Parameters:
sat_obj – Hypso satellite object
model_path – Absolute path for the pre-trained Scikit-Learn model
- Returns:
No return.
- Return type:
None